logo_hcam

Revista Médica Científica CAMbios

Periodicidad semestral: flujo continuo.

ISSN - Electrónico: 2661-6947 / DOI: 10.36015 • LILACS BIREME (19784); LATINDEX (20666)

Ver PDF (Spanish)

Keywords

Cognition Disorders
Connectome
Neurons
Neurodevelopmental Disorders
Genome, Human
Neurology

How to Cite

1.
From Genome to Cognition: A Review of Cognitive Disorders and Their Molecular Convergences. Cambios rev. méd. [Internet]. 2025 Dec. 20 [cited 2026 Jan. 3];24(2):e1071. Available from: https://revistahcam.iess.gob.ec/index.php/cambios/article/view/1071

Abstract

INTRODUCTION: Cognitive disorders encompass a broad spectrum of clinical conditions that
affect higher mental functions such as memory, language, attention, perception, and executive
planning. They manifest in clinical pictures such as dementias, neurodevelopmental disabilities,
psychoses, and rare diseases with an altered cognitive phenotype. Their classification, etiology,
and treatment represent significant challenges for current medicine.

OBJECTIVE: This review synthesizes the main clinical groups, the implicated genes, the relevant
environmental factors, the analysis of functional networks (interactomes), and the chromosomal
disorders associated with these syndromes, with an emphasis on advances in neurogenetics
and molecular biology.

MATERIALS AND METHODS: The PubMed database was used for the literature search, ELICIT
for the deep search of articles, and STRING to analyze protein and gene interactions.

RESULTS: The review of some of the genetic and chromosomal diseases yields a list of cognitive
disorders and the genes related to these disorders, which are shown in tables.

DISCUSSION: Being a review article, the entire text is structured as ideas and theoretical
support that explain cognitive disorders and the related genes.

CONCLUSIONS: A public agenda must exist that includes prevention policies, genetic and
epigenetic screening, access to evidence-based therapies, and educational programs focused
on inclusion and neurodiversity.

 

Ver PDF (Spanish)

References

1. Insel TR. Rethinking schizophrenia. Nature. 2010; 468(7321):187–193. https://www.nature.com/articles/nature09552

2. Pais R, Ruano L, P Carvalho O, Barros H. Global Cognitive Impairment Prevalence and Incidence in Community Dwelling

Older Adults-A Systematic Review. Geriatrics (Basel). 2020 Oct

27;5(4):84. doi: https://pubmed.ncbi.nlm.nih.gov/33121002/

3. Espinoza C, Salinas M, Morocho A, Morales A, Verdezoto B. Mortality from Alzheimer’s Disease and Other Dementias in Ecuador during the Period 2012-2022. Clin Pract Epidemiol Ment Health. 2025 Jun 2; 21:e17450179376076. doi: 10.2174/011745017937 6076250530074402. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC12272087/#:~:text=National%20mortality%20rates%20showed%20a,men%20and%20766%20were%20women

4. Craddock N, Owen MJ. The Kraepelinian dichotomy – going,

going… but still not gone. Br J Psychiatry. 2010; 196(2):92–95.

https://doi.org/10.1192/bjp.bp.109.073429. Available from: https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/kraepelinian-dichotomy-going-going-but-still-notgone/9BD6BEDF610DD5C7E7F376518CB515A0

5. Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of

psychiatric disorders: the emerging picture and its implicatios. Nat Rev Genet. 2012; 19(8):537–551. Available from: https://pubmed.ncbi.nlm.nih.gov/22777127/

6. Gandal MJ, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018; 359(6376):693–697. DOI: https://doi.org/10.1126/scienceaad6469. Available from: https://www.science.org/doi/10.1126/science.aad6469

7. Hawrylycz MJ, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012; 489(7416):391–399. DOI: https://doi.org/10.1038/nature11405. Available from:

https://www.nature.com/articles/nature11405

8. Corder EH, et al. Gene dose of Apolipoprotein E type 4 allele and the risk of Alzheimer’s disease. Science. 1993; 261(5123):921–923. DOI: https://doi.org/10.1126/science.8346443. Available from: https://www.science.org/doi/10.1126/science.8346443

9. De Strooper B. Loss-of-function mutations in presenilin-1 cause early-onset Alzheimer’s disease. Nature. 1998; 391(6665):387–390. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC1796779/

10. MacDonald ME, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993; 72(6):971–983. DOI: https://doi.org/10.1016/0092-8674(93)90585-E. Available from: https://www.cell.com/cell/abstract/0092-8674(93)90585-E?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F009286749390585E%3Fshowall%3Dtrue

11. Chen-Plotkin, AS, Martinez-Lage, M., Sleiman, PM, Hu, W.,

Greene, R., Wood, EM, ... y Van Deerlin, VM. Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration. Archivos de Neurología, 2011; 68 (4), 488-497. https://jamanetwork.com/journals/jamaneurology/fullarticle/802787

12. Verkerk AJ, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region in fragile X syndrome. Cell. 1991; 65(5):905–914. https://doi.org/10.1016/0092-8674(91)90397-H. Available froom: https://www.cell.com/cell/abstract/0092-8674(91)90397-H?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F009286749190397H%3Fshowall%3Dtrue

13. Amir RE, et al. Rett syndrome is caused by mutations in X-linked MECP2. Nat Genet. 1999; 23(2):185–188. DOI: 10.1038/13810.Available from: https://pubmed.ncbi.nlm.nih.gov/10508514/

14. Lai CS, Gerrelli D, Monaco AP, Fisher SE, Copp AJ. FOXP2

expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain. 2003 Nov;126(Pt 11):2455-62. Epub 2003 Jul 22. DOI: 10.1093/brain/awg247. Available from: https://pubmed.ncbi.nlm.nih.gov/12876151/

15. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Neuron. 2008; 60(3):353–363. PMCID: PMC2756414. DOI: 10.1038/nrg2346. Available from: https://pubmed.ncbi.nlm.nih.gov/18414403/

16. Martinowich K, Lu B. Interaction between BDNF and serotonin: role in mood disorders. europsychopharmacology. 2008;33(1):73–83. DOI: https://doi.org/10.1038/sj.npp.1301571 Available from:

https://www.nature.com/articles/1301571

17. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014; 13(3):330–338. https://doi.org/10.1016/S1474-4422(13)70278-3 . Available from: https://www.thelancet.com/journals/laneur/article/PIIS1474-

4422(13)70278-3/fulltext

18. Amy E. Kalkbrenner, Rebecca J. Schmidt, Annie C. Penlesky,

Environmental Chemical Exposures and Autism Spectrum

8 / 8 CAMbios 24(2) 2025 / e1071 Disorders: A Review of the Epidemiological Evidence, Current Problems in Pediatric and Adolescent Health Care, Volume 44, Issue 10, 2014, Pages 277-318. DOI: https://doi.org/10.1016/j.cppeds. 2014.06.001. Available from:

https://www.sciencedirect.com/science/article/abs/pii/S1538544214000741?via%3Dihub

19. Provencal N, Binder EB. The effects of early life stress on the epigenome. Exp Neurol. 2015; 268:10–20. https://doi.org/10.1016/j.expneurol.2014.09.001. Available from:

https://www.sciencedirect.com/science/article/abs/pii/S0014488614002842?via%3Dihub

20. Wiseman FK, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci. 2015; 16(9):564–574. https://doi.org/10.1038/nrn3983. Available from:

https://www.nature.com/articles/nrn3983

21. Pober BR. Williams-Beuren syndrome. N Engl J Med. 2010;

362(3):239–252. https://doi.org/10.1056/NEJMra0903074 . Available from:

https://pubmed.ncbi.nlm.nih.gov/20089974/

22. Cassidy SB, et al. Prader-Willi syndrome. Genet Med. 2012;

14(1):10–26. https://doi.org/10.1038/gim.0b013e31822bead0no .

Available from:

https://pubmed.ncbi.nlm.nih.gov/22237428/

23. Sanders SJ, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015; 87(6):1215–1233. https://doi.org/10.1016/j.neuron.2015.09.016.

Available from:

https://www.cell.com/neuron/fulltext/S0896-

6273(15)00773-4?_returnURL=https%3A%2F%2Flinkinghub.

elsevier.com%2Fretrieve%2Fpii%2FS0896627315007734%3Fshowall%3Dtrue

24. Vicepresidencia de la República del Ecuador. Misión Solidaria Manuela Espejo. Estudio Biopsicosocial Clínico-Genético de las Personas con Discapacidad en Ecuador. OPS César Paz-y-Miño, análisis técnico. 2012. Vicepresidencia de la República del Ecuador.

https://es.scribd.com/document/329462188/Mision-Solidaria-

Manuela-Espejo-Estudio-biopsicosocial-genetico-de-las-personas-con-discapacidad-en-Ecuador

25. Paz-y-Miño, C. et al. Multi-institutional experience of genetic diagnosis in Ecuador: National registry of chromosome alterations and polymorphisms. Molecular Genetics and Genomic Medicine. 2020: e1087. doi: 10.1002/mgg3.1087. Available from:

https://pubmed.ncbi.nlm.nih.gov/31830383/Elicit.com. AI for Scientific Research.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Medical-Scientific Journal CAMbios HECAM