Marcadores hematológicos y bioquímicos para el diagnóstico precoz de bacteriemias causadas por Enterobacteriaceae resistentes a los carbapenémicos.

Palabras clave: Bacteriemia, Enterobacteriaceae, Enterobacteriaceae Resistentes a los Carbapenémicos, Pruebas de Sensibilidad Microbiana, Biomarcadores, Tiempo de Tromboplastina Parcial

Resumen

INTRODUCCIÓN. Las bacteriemias causadas por Enterobacteriaceae resistentes a carbapenémicos se asocian con altas tasas de mortalidad a diferencia de las bacteriemias causadas por Enterobacteriaceae sensibles a carbapenémicos. Los hallazgos clínicos y de laboratorio son importantes para determinar los esquemas terapéuticos y su pronóstico; su diagnóstico precoz resulta esencial para un manejo adecuado. OBJETIVO. Relacionar valores de marcadores sanguíneos y bioquímicos en bacteriemias causadas por Enterobacteriaceae resistentes a carbapenémicos. MATERIALES Y MÉTODOS. Estudio analítico transversal. Población de 427 y muestra de 224 datos de hemocultivos positivos para Enterobacteriaceae de pacientes atendidos en el Hospital de Especialidades Carlos Andrade Marín en el periodo mayo 2016 a julio 2018. Criterios de inclusión: i) al menos un hemocultivo positivo; ii) recuperación del aislado de CRE o CSE y iii) recolección simultanea de muestras de sangre y pruebas de laboratorio. Criterios de exclusión: i) bacteriemias polimicrobianas; ii) valores fuera de rango y iii) reportes sin valores numéricos. El análisis de datos se realizó mediante el programa estadístico International Business Machines Statistical Package for the Social Sciences versión 24.0. RESULTADOS. Se demostró que el recuento de leucocitos [OR 1,21 (95% IC: 1,03-1,43)], el recuento de plaquetas [OR 1,65 (95% IC: 1,37-1,98)] y el tiempo parcial de tromboplastina [OR 1,29 (95% IC: 1,04-1,60)] fueron buenas variables predictoras independientes, mediante análisis de regresión logística multivariante. CONCLUSIÓN. La trombocitopenia y el tiempo parcial de tromboplastina prolongado se asociaron con bacteremia causada por Enterobacteriaceae resistentes a carbapenémicos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Kim H il, Park S. Sepsis: Early recognition and optimized treatment. Tuberculosis and Respiratory Diseases. Korean National Tuberculosis Association; 2019;82(1):6-14. DOI:10.4046/trd.2018.0041

Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Critical Care Medicine. 2003 Dec;31(12):2742–51. DOI: 10.1097/01.CCM.0000098031.24329.10

Opota O, Jaton K, Greub G. Microbial diagnosis of bloodstream infection: Towards molecular diagnosis directly from blood. Vol. 21, Clinical Microbiology and Infection. Elsevier; 2015: 21(4):323-331. DOI: 10.1016/j.cmi.2015.02.005

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clinical Microbiology Reviews [Internet]. 2012 Oct 1 [cited 2021 May 8];25(4):682–707. DOI:10.1128/CMR.05035-11

Peters RPH, Agtmael MAV, Danner SA, Savelkoul PHM, Vandenbroucke-Grauls CMJE. New developments in the diagnosis of bloodstream infections. Vol. 4, Lancet Infectious Diseases. 2004: 4 (12):751–60. DOI:10.1016/S1473-3099(04)01205-8

Tabak YP, Vankeepuram L, Ye G, Jeffers K, Gupta V, Murray PR. Blood culture turnaround time in U.S. acute care hospitals and implications for laboratory process optimization. Journal of Clinical Microbiology [Internet]. 2018 Dec 1 [cited 2020 Aug 2];56(12): e00500–18. Available from: https://jcm.asm.org/content/56/12/e00500-18

European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints - breakpoints and guidance. 2020. p. 15. Available from: https://www.eucast.org/clinical_breakpoints/

Rahal JJ. Antimicrobial Resistance among and Therapeutic Options against Gram‐Negative Pathogens. Clinical Infectious Diseases. 2009 Aug 15;49(s1): S4–10. DOI:10.1086/599810

Li L, Huang H. Risk factors of mortality in bloodstream infections caused by Klebsiella pneumonia. Medicine (United States). 2017 Sep 1;96(35): e7924. DOI:10.1097/MD.0000000000007924. Available from: https://www.eucast.org/clinical_breakpoints/

Liang Q, Huang M, Xu Z. Early use of polymyxin B reduces the mortality of carbapenem-resistant Klebsiella pneumoniae bloodstream infection. Brazilian Journal of Infectious Diseases. 2019 Jan 1;23(1):60–5. Available from: https://pubmed.ncbi.nlm.nih.gov/30796888/

Bartolleti F, Seco BMS, dos Santos CC, Felipe CB, Lemo MEB, Alves TDS, et al. Polymyxin B resistance in carbapenem-resistant Klebsiella pneumoniae, São Paulo, Brazil [Internet]. Vol. 22, Emerging Infectious Diseases. Centers for Disease Control and Prevention (CDC); 2016 [cited 2020 Aug 13]. p. 1849–51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038415/

Boszczowski I, Salomão MC, Moura ML, Freire MP, Guimarães T, Cury AP, et al. Multidrug-resistant Klebsiella pneumoniae: genetic diversity, mechanisms of resistance to polymyxins and clinical outcomes in a tertiary teaching hospital in Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo [Internet]. 2019 [cited 2022 Mar 14];61. Available from: https://pubmed.ncbi.nlm.nih.gov/31241658/

Richter SE, Miller L, Needleman J, Uslan DZ, Bell D, Watson K, et al. Risk factors for development of carbapenem resistance among gram-negative rods. Open Forum Infectious Diseases [Internet]. 2019 Mar 1 [cited 2020 Aug 13];6(3): ofz027. Available from: https://academic.oup.com/ofid/article/6/3/ofz027/5299642

Routsi C, Pratikaki M, Platsouka E, Sotiropoulou C, Nanas S, Markaki V, et al. Carbapenem-resistant versus carbapenem-susceptible Acinetobacter baumannii bacteremia in a Greek intensive care unit: risk factors, clinical features and outcomes. Infection [Internet]. 2010 Jun [cited 2022 Mar 14];38(3):173–80. Available from: https://pubmed.ncbi.nlm.nih.gov/20224962/

Tuon FF, Gortz LW, Rocha JL. Risk factors for pan-resistant Pseudomonas aeruginosa bacteremia and the adequacy of antibiotic therapy. Brazilian Journal of Infectious Diseases. 2012 Jul 1;16(4):351–6. Available from: https://pubmed.ncbi.nlm.nih.gov/22846123/

Zheng X, Wang J feng, Xu W lan, Xu J, Hu J. Clinical and molecular characteristics, risk factors and outcomes of Carbapenem-resistant Klebsiella pneumoniae bloodstream infections in the intensive care unit. Antimicrobial Resistance and Infection Control [Internet]. 2017 Oct 2 [cited 2020 Aug 13];6(1):102. Available from: https://aricjournal.biomedcentral.com/articles/10.1186/s13756-017-0256-2

Novelli A, Fallani S, Cassetta MI, Conti S, Mazzei T. Postantibiotic leukocyte enhancement of meropenem against gram-positive and gram-negative strains. Antimicrobial agents and chemotherapy [Internet]. 2000 [cited 2022 Mar 14];44(11):3174–6. Available from: https://pubmed.ncbi.nlm.nih.gov/11036045/

Erden M, Gulcan E, Bılen A, Bılen Y, Uyanık A, Keleş M. Pancytopenıa and Sepsıs due to Meropenem: A Case Report. Tropical Journal of Pharmaceutical Research. 2013 Mar 26;12(1):127–9. Available from: https://www.ajol.info/index.php/tjpr/article/download/86204/76039

DeLeo FR, Kobayashi SD, Porter AR, Freedman B, Dorward DW, Chen L, et al. Survival of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 258 in Human Blood. Antimicrob Agents Chemother. 2017 Apr; 61 (4): e02533-16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365663/

Kobayashi SD, Porter AR, Freedman B, Pandey R, Chen L, Kreiswirth BN, et al. Antibody-mediated killing of carbapenem-resistant ST258 Klebsiella pneumoniae by human neutrophils. mBio. 2018 Mar 13;9(2). Available from: https://pubmed.ncbi.nlm.nih.gov/29535199/

Castillo LA, Birnberg-Weiss F, Rodriguez-Rodrigues N, Martire-Greco D, Bigi F, Landoni VI, et al. Klebsiella pneumoniae ST258 Negatively Regulates the Oxidative Burst in Human Neutrophils. Frontiers in Immunology. 2019 Apr 26; 10 (929): 1-16. Available from: https://fjfsdata01prod.blob.core.windows.net/articles/files/451401/pubmed-zip/.versions/1/.package-entries/fimmu-10-00929/fimmu-10-00929.pdf?sv=2018-03-28&sr=b&sig=Id0D4IVDJt4sJAnT4QoEap%2F02dogmtqBYAcR8dk%2BupY%3D&se=2022-03-15T20%3A47%3A05Z&sp=r&rscd=attachment%3B%20filename%2A%3DUTF-8%27%27fimmu-10-00929.pdf

Marsh JW, Mustapha MM, Griffith MP, Evans DR, Ezeonwuka C, Williampasculle A, et al. Evolution of outbreak-causing carbapenem-resistant Klebsiella pneumoniae ST258 at a tertiary care hospital over 8 years. mBio. 2019 Sep 1;10(5): e01945-19. Available from: https://journals.asm.org/doi/epub/10.1128/mBio.01945-19

Zhang J, Du HM, Cheng MX, He FM, Niu BL. Role of international normalized ratio in nonpulmonary sepsis screening: An observational study. World Journal of Clinical Cases [Internet]. 2021 [cited 2022 Mar 13];9(25):7405-7416. Available from: https://pubmed.ncbi.nlm.nih.gov/34616807/

Liu J, Yan Y, Zhang F. Risk Factors for Tigecycline-Associated Hypofibrinogenemia. Therapeutics and Clinical Risk Management [Internet]. 2021 Apr 16 [cited 2022 Mar 13];17: 325–32. Available from: https://www.dovepress.com/getfile.php?fileID=68581

Rountree KM, Yaker Z, Lopez PP. Partial Thromboplastin Time. Published online January 20, 2021. Available from: https://pubmed.ncbi.nlm.nih.gov/29939549/

Saleem AF, Naz Qamar F, Shahzad H, Qadir M, Zaidi AKM. Trends in antibiotic susceptibility and incidence of late-onset Klebsiella pneumoniae neonatal sepsis over a six-year period in a neonatal intensive care unit in Karachi, Pakistan. International Journal of Infectious Diseases. 2013;17(11): e961–5. Available from: https://pubmed.ncbi.nlm.nih.gov/23759260/

Alhurayri F, Porter E, Douglas-Louis R, Minejima E, Wardenburg JB, Wong-Beringer A. Increased risk of thrombocytopenia and death in patients with bacteremia caused by high alpha toxin-producing methicillin-resistant staphylococcus aureus. Toxins [Internet]. 2021 Oct 14 [cited 2022 Mar 13];13(10):726. Available from: https://www.mdpi.com/2072-6651/13/10/726/htm

Alexander EL, Loutit J, Tumbarello M, Wunderink R, Felton T, Daikos G, et al. Carbapenem-Resistant Enterobacteriaceae Infections: Results from a Retrospective Series and Implications for the Design of Prospective Clinical Trials. Open Forum Infectious Diseases. 2017;4(2):1–10. Available from: https://pubmed.ncbi.nlm.nih.gov/28584849/

Yu W-L, Lee N-Y, Wang J-T, Ko W-C, Ho C-H, Chuang Y-C. Tigecycline Therapy for Infections Caused by Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Critically Ill Patients. Antibiotics. 2020 May 5;9(5):231. Available from: https://pubmed.ncbi.nlm.nih.gov/32380654/

Liu J, Liu Y, Liu S, Zhang Q, Zheng J, Niu Y, et al. Hypocoagulation induced by broad-spectrum antibiotics in extensive burn patients. Burns & Trauma. 2019 Dec 1; 7:13. Available from: https://pubmed.ncbi.nlm.nih.gov/31058197/

Chen J, Li X, Li L, Zhang T, Zhang Q, Wu F, et al. Coagulation factors VII, IX and X are effective antibacterial proteins against drug-resistant Gram-negative bacteria. Cell Research. 2019 Sep 9;29(9):711–24. Available from: https://www.nature.com/articles/s41422-019-0202-3

De Stoppelaar SF, Veer Van ’t C, Claushuis TAM, Albersen BJA, Albersen BJA, Roelofs JJTH, Poll T van der. Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice. Blood. 2014 Dec 11;124(25):3781–90. Available from: https://pubmed.ncbi.nlm.nih.gov/25301709/

Wang Z, Ren J, Liu Q, Li J, Wu X, Wang W, et al. Hypermucoviscous Klebsiella pneumoniae infections induce platelet aggregation and apoptosis and inhibit maturation of megakaryocytes. Thrombosis Research. 2018 Nov 1; 171:45–54. Available from: https://pubmed.ncbi.nlm.nih.gov/30248660/

Antoniak S. The coagulation system in host defense. Research and Practice in Thrombosis and Haemostasis. 2018 Jul;2(3):549–57. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046589/

Levi M, Keller TT, Van Gorp E, Ten Cate H. Infection and inflammation and the coagulation system. Cardiovascular Research. Oxford Academic; 2003 Oct 15; 60(1):26–39. Available from: https://pubmed.ncbi.nlm.nih.gov/14522404/

Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology. 2010 Sep 1;5(9):1315–6. Available from: https://pubmed.ncbi.nlm.nih.gov/20736804/

Wyllie DH. Relation between lymphopenia and bacteraemia in UK adults with medical emergencies. J Clin Pathol. 2004;57 (9):950–5. Available from: https://pubmed.ncbi.nlm.nih.gov/15333656/

Lubis N, Lubis BM, Pasaribu S, Pasaribu AP. Neutrophil Lymphocytes Ratio As a Predictor of Bacteremia in Children. Global Journal for Research Analysis. 2020;1–3. Available from: https://www.worldwidejournals.com/global-journal-for-research-analysis-GJRA/fileview/neutrophil-lymphocytes-ratio-as-a-predictor-of-bacteremia-in-children_January_2020_1578654493_7007964.pdf

Jager CPC de, Wijk PTLvan, Mathoera RB, Jongh-Leuvenink J de, Poll T van der, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Critical Care [Internet]. 2010 Oct 29 [cited 2022 Mar 14];14(5):1–8. Available from: https://ccforum.biomedcentral.com/articles/10.1186/cc9309

Zhou YQ, Feng DY, Li WJ, Yang HL, Wang ZN, Zhang TT, et al. Lower neutrophil-to-lymphocyte ratio predicts high risk of multidrug-resistant pseudomonas aeruginosa infection in patients with hospital-acquired pneumonia. Therapeutics and Clinical Risk Management. 2018 Oct; 14:1863–9. Available from: https://ccforum.biomedcentral.com/articles/10.1186/cc9309

Zusman O, Farbman L, Tredler Z, Daitch V, Lador A, Leibovici L, et al. Association between hypoalbuminemia and mortality among subjects treated with ertapenem versus other carbapenems: Prospective cohort study. Clinical Microbiology and Infection. 2015;21(1):54–8. Available from: https://pubmed.ncbi.nlm.nih.gov/25636928/

Cuesta DP, Blanco VM, Vallejo ME, Hernández-Gómez C, Maya JJ, Motoa G, et al. Clinical impact of ertapenem de-escalation in critically-ill patients with Enterobacteriaceae infections. Revista Chilena de Infectologia. 2019 Feb 1;36(1):9–15. Available from: https://pubmed.ncbi.nlm.nih.gov/31095199/

Nargis W, Ahamed B, Ibrahim M. Procalcitonin versus C-reactive protein: Usefulness as biomarker of sepsis in ICU patient. International Journal of Critical Illness and Injury Science. 2014; 4(3):195-199. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200544/

Wang S, Chen D. The correlation between procalcitonin, C-reactive protein and severity scores in patients with sepsis and their value in assessment of prognosis. Chinese Critical Care Medicine. 2015 Feb 1;27(2):97–101. Available from: https://pubmed.ncbi.nlm.nih.gov/25665606/

Ryoo SM, Han KS, Ahn S, Shin TG, Hwang SY, Chung SP, et al. The usefulness of C-reactive protein and procalcitonin to predict prognosis in septic shock patients: A multicenter prospective registry-based observational study. Scientific Reports. 2019 Dec 1 29;9(1):1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31036824/

Lin JC, Chen ZH, Chen XD. Elevated serum procalcitonin predicts Gram-negative bloodstream infections in patients with burns. Burns. 2020 Feb 1;46(1):182–9. Available from: https://pubmed.ncbi.nlm.nih.gov/31859083/

Yan ST, Sun LC, Jia HB, Gao W, Yang JP, Zhang GQ. Procalcitonin levels in bloodstream infections caused by different sources and species of bacteria. American Journal of Emergency Medicine. 2017 Apr 1;35(4):579–83. Available from: https://pubmed.ncbi.nlm.nih.gov/27979420/

Cheng W, Wang H, Zhang J, Bai G, Han W, Chen J, et al. Lymphocyte subset counts as diagnostic and prognostic markers for carbapenem-resistant Enterobacteriaceae (CRE) infection in critically ill patients. International Journal of Infectious Diseases. 2020; 96:315–22. Available from: https://pubmed.ncbi.nlm.nih.gov/32389844/

Clemente AM, Castronovo G, Antonelli A, Maria D’andrea M, Tanturli M, Perissi E, et al. Differential Th17 response induced by the two clades of the pandemic ST258 Klebsiella pneumoniae clonal lineages producing KPC-type carbapenemase. 2017; 12(6): Available from: 30178847. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460819/

Publicado
2021-12-30
Cómo citar
1.
Cabezas Mera F, Reyes Chacón J, Campoverde Lupercio A, Lalangui Domínguez D, Cárdenas Martínez A. Marcadores hematológicos y bioquímicos para el diagnóstico precoz de bacteriemias causadas por Enterobacteriaceae resistentes a los carbapenémicos. CAMbios-HECAM [Internet]. 30dic.2021 [citado 10sep.2024];20(2):67-3. Available from: https://revistahcam.iess.gob.ec/index.php/cambios/article/view/449
Sección
Estudio Original: Estudios de Validación