Antecedente de grado de expresividad de p53 en carcinomas basocelulares como predictor de recurrencia
Resumen
INTRODUCCIÓN. El gen Tp53 proporciona instrucciones para producir proteína tumoral 53. El Tp53 es un gen supresor tumoral que protege el ciclo celular, reparando el ADN o activando la apoptosis. Es clave en la carcinogénesis del carcinoma basocelular, patología que cobra relevancia en Ecuador, debido a su latitud y altitud, factores que determinan un mayor daño por exposición a radiación ultravioleta y por ende para carcinoma basocelular. Estudios sugieren que la inmunoexpresión de la proteína tumoral 53 podría ser un predictor de recurrencia en esta neoplasia. OBJETIVO. Determinar si el grado de expresividad de especies mutadas de proteína tumoral 53 en pacientes con carcinoma basocelular es una variable que tiene relación con la recurrencia y agresividad en los diferentes subtipos histológicos. MATERIALES Y MÉTODOS.
Estudio de revisión bibliográfica de diferentes artículos científicos publicados en revistas indexadas y bases de datos durante los últimos diez años: ElSevier, Medigraphic, PubMed, Redalyc, ResearchGate, ScienceDirect, SpringerLink, Cochrane Database of Systematic Reviews. RESULTADOS. Se obtuvieron 104 resultados de los cuales se seleccionaron 50 artículos científicos que incluyeron revisiones sistemáticas,
meta-análisis, artículos originales y reportes de casos en idiomas español e inglés. CONCLUSIÓN. Tp53 se encuentra mutado en más del 50% de carcinomas basocelulares y tiene un rol clave en su carcinogénesis. La inmunoexpresión aberrante de proteína tumoral 53 es un marcador de riesgo de recurrencia y agresividad
en carcinoma basocelular, como lo indican los artículos revisados. Sin embargo, se requiere estudios locales que establezcan el verdadero valor de proteína tumoral 53 como marcador de recurrencia y/o agresividad en la población ecuatoriana.
Descargas
Citas
Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. Egypt J Med Hum Genet
[Internet]. 2020;21(1). https://rdcu.be/cIcCJ DOI: https://doi.org/10.1186/s43042-020-00089-x. Available from:
https://jmhg.springeropen.com/articles/10.1186/s43042-020-00089-x#Abs1
Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y, et al. Mutant p53 in Cancer Progression and Targeted Therapies.
Front Oncol [Internet]. 2020;10(November):1–9. DOI: https://
doi.org/ 10.3389/fonc.2020.595187. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677253/#:~:text=The%20relia nce%20of%20
tumors%20on,lethality%20(78%2C%2079)
Kastenhuber E, Lowe S. Putting p53 in context Edward. Cell [Internet]. 2017;170(6):1062–78. DOI: 10.1016/j.
cell.2017.08.028. Available from:
https://pubmed.ncbi.nlm.nih.gov/28886379/
Del Castillo - Cabrera, S., Escalante - Jibaja, E., Rosas - Marroquín, N., Susanibar - Arteaga, C., & Mattos - Guerra, E. (2016). Expresión moderada-alta de la proteína p53 como factor de riesgo para localización múltiple en carcinomas basocelulares. Dermatología Peruana, 26-4(1028-7175), 187–191.
Verkouteren JAC, Ramdas KHR, Wakkee M, Nijsten T. Epidemiology of basal cell carcinoma: scholarly review. Br
J Dermatol. 2017;177(2): 359–72. DOI: https://doi.org/10.1111/bjd.15321. Available from:
https://onlinelibrary.wiley.com/doi/epdf/10.1111/bjd.15321
Huang S, Chang S, Mu S, Jiang H, Wang S, Kao J, et al. Imiquimod activates p53-dependent apoptosis in a
human basal cell carcinoma cell line. J Dermatol Sci [Internet]. 2016;81(3): 182–91. DOI: 10.1016/j.jdermsci.
12.011. Available from:
https://pubmed.ncbi.nlm.nih.gov/26775629/
Di Nardo L et al.. Molecular alterations in basal cell carcinoma subtypes. Sci reports Nat [Internet]. 2021; DOI:
1038/s41598-021-92592-3. Available from:
https://pubmed.ncbi.nlm.nih.gov/34168209/
Tampa M, Georgescu SR, Mitran CI, Mitran MI, Matei C, Scheau C, et al. Recent advances in signaling pathways
comprehension as carcinogenesis triggers in basal cell carcinoma. J Clin Med. 2020; 9(9):1–17. DOI: https://doi.
org/10.3390/jcm9093010 Available from:
https://www.mdpi.com/2077-0383/9/9/3010
Álvarez Andrey, Rodríguez José SA. Revisión sistemática del carcinoma basocelular. Rev médica Sinerg [Internet]. 2020;5 (5). DOI: https://doi.org/10.31434/rms.v5i5.483. Disponible en: https://revistamedicasinergia.com/index.php/rms/article/view/483
Ariza S, Espinosa S, Naranjo M. Terapias no quirúrgicas para el carcinoma basocelular: revisión. Actas Dermosifiliogr [Internet]. 2017; 108(9): 809–17. DOI: https://doi: 10.1016/j.ad.2017.01.018. Disponible en: https://www.actasdermo.org/es-terapias-no-quirurgicas-el-carcinoma-articulo-S0001731017301187
Posso D, Bautista M. Histopatología, inmunohistoquímica y metástasis en pacientes con carcinoma basocelular. Oncol. 2021;31(2): 93–103. DOI: https://doi.org/10.33821/555.
Disponible en:
https://roe-solca.ec/index.php/johs/article/view/555
Bidari F, Nasiri S, Zahedifard S, Sabeti S. Comparison of P53 intensity, frequency and size in normal skin periphery of squamous cell carcinoma, basal cell carcinoma and melanocytic nevus in Persian skin type. Iran J Pathol [Internet]. 2017;12(1):62–6. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938725/
Cameron M, Lee E, Hibler B, Barker C, Mori S, Cordova M, et al. Basal cell carcinoma: Epidemiology; pathophysiology; clinical and histological subtypes; and disease associations. J Am Acad Dermatol [Internet]. 2019; 80(2):303–17. DOI: https://doi.org/10.1016/j.jaad.2018.03.060 Available from: https://www.sciencedirect.com/science/article/abs/pii/S0190962218307758
Lupu M, Caruntu A, Caruntu C, Papagheorghe L, Ilie M, Voiculescu V, et al. Neuroendocrine factors: The missing link in non-melanoma skin cancer (Review). Oncol Rep. [Internet]. 2017;38(3):1327–40. DOI: 10.3892/or.2017.5817 Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549028
Liu F, Jia J, Zheng Y. UV-induced molecular signaling differences in melanoma and non-melanoma skin
cancer. Adv Exp Med Biol [Internet]. 2017; 996:27–40. DOI: https://doi.org/10.1007/978-3-319-56017-5_3. Available from:
https://link.springer.com/chapter/10.1007%2F978-3-319-56017-5_3
Cueva P, Yépez J, Tarupi W. Registro Nacional de Tumores - SOLCA. Epidemiología del Cáncer en Quito. 16 ed.
54–59 p. ISBN: 978-9942-9958-3-4. Disponible en:
https://repositorio.uide.edu.ec/handle/37000/4150
Gracia-Cazaña T, González S, Parrado C, Juarranz, Gilaberte Y. Influence of the Exposome on Skin Cancer.
Actas Dermosifiliogr [Internet]. 2020;111(6):460–70. DOI: https://doi.org/10.1016/j.ad.2020.04.008. Available
from:
https://www.sciencedirect.com/science/article/pii/S0001731020301332?via%3Dihub
Costache M, Georgescu TA, Oproiu AM, Costache D, Naie A, Sajin M, et al. Emerging concepts and latest advances regarding the etiopathogenesis, morphology and immunophenotype of basal cell carcinoma. Rom J Morphol Embryol [Internet]. 2018;59(2):427–33. Available from:
etiopathogenesis_morphology_and_immunophenotype_of_basal_cell_carcinoma
Kiely JR, Patel AJK. A retrospective study of 694 Basal Cell Carcinoma excisions to quantify deep margin documentation and clearance compared to histological type and surgical margin. J Plast Reconstr Aesthetic Surg [Internet]. 2019;72(11):1805–12. DOI: https://doi.org/10.1016/j.bjps.2019.06.002. Available from:
https://www.jprasurg.com/article/S1748-6815(19)30277-3/fulltext
Stanoszek L, Wang G, Harms P. Histologic mimics of basal cell carcinoma. Arch Pathol Lab Med. [Internet].
; 141(11): 1490–502. DOI: https://doi.org/10.5858/arpa.2017-0222-RA. Available from:
Enache AO, Stepan AE, Mărgăritescu C, Pătraşcu V, Ciurea RN, Simionescu CE, et al. Immunoexpression of
p53 and COX-2 in basal cell carcinoma. Rom J Morphol Embryol [Internet]. 2018;59(4):1115–20. Available from:
https://pubmed.ncbi.nlm.nih.gov/30845292/
Shamsi S, Dabiri S, Zeynadini A, Iranpour M, Khalili M, Alijani S, et al. Evaluation of immunohistochemical
findings and clinical features associated with local aggressiveness in basal cell carcinoma. Iran J
Pathol. [Internet]. 2019;14(3):193–6. DOI: 10.30699/ijp.2019.82907.1781. Available from:
https://pubmed.ncbi.nlm.nih.gov/31582995/
World Health Organization Global Cancer Observatory International Agency for Research on Cancer. Global Cancer Observatory. International Agency for Research on Cancer. Word Health Organization [Internet]. Vol. 774. 2020. p. 1. Available from:
https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=population&mode_population=continents&
population=900&populations=&key=asr&sex=2&-cancer=20&type=0&statistic=5&prevalence=0&population_
group=0&ages_group%5B%5D=0&ages_group%-5B%5D=17&group_cancer=0&
Süngü N, Kiran MM, Tatli Doğan H, Kiliçarslan A, Karakök E, Akyol M. Evaluation of p53 and Ki67 expression
profiles in basal cell carcinomas in a usual and an unusual location. Turk Patoloji Derg. 2018; 34(2):165–70. DOI:
https://doi: 10.5146/tjpath.2018.01424. Available from:
https://pubmed.ncbi.nlm.nih.gov/29630084/
Bauer A, Haufe E, Heinrich L, Seidler A, Schulze HJ, Elsner P, et al. Basal cell carcinoma risk and solar UV exposure in occupationally relevant anatomic sites: Do histological subtype, tumor localization and Fitzpatrick phototype play a role? A population-based case-control study. J Occup Med Toxicol. 2020;15(1):1–13. DOI: http://dx.doi.org/: 10.1186/s12995-020-00279-8. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488106/
Arnold M. Global Cancer Observatory. International Agency for Research on Cancer. Word Health Organization [Internet]. 2018 [cited 2021 Dec 6]. Available from:
https://gco.iarc.fr/causes/uv/toolsdualbars?mode=1&sex=0&popu l a t i o n = 3 & c o u n t r y = 4 & c o n t i n e n t = 0 & c a ncer=0&key=paf_all&lock_scale=0&nb_results=10&age_group=3&population1=218&population2=218
Pires A, Godoy P, Silveira S, Leão D. Evaluation of surgical margins according to the histological type of basal cell
carcinoma. An Bras Dermatol. [Internet] 2017; 92(2):226-30
DOI: http://dx.doi.org/10.1590/abd1806-4841.20175076.
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429110/
Robledo H, Rodas O, Rodríguez E. Caracterización epidemiológica, clínica e histopatológica del carcinoma
basocelular de piel. [Internet] 2021; DOI: https://doi.org/10.36109/rmg.v160i1.262. Disponible en:
https://www.revistamedicagt.org/index.php/RevMedGuatemala/article/view/262
Ruiz Gonzalez J, Guevara Gutierrez E, Hernández Torres M, Solís Ledesma G, Tlacuilo Parra A. Risk of recurrence and new malignant cutaneous neoplasms in Mexican subjects with basal cell carcinoma. Cir y Cir (English Ed. 2018;86(5):417–22. DOI: 10.24875/CIRU.18000190. Available from: https://pubmed.ncbi.nlm.nih.gov/30226497/
Vaseghi G, Haghjoo S, Naderi J, Eshraghi A, Mahdavi M, Mansourian M. Coffee consumption and risk of nonmelanoma skin cancer: A dose-response meta-analysis.Eur J Cancer Prev. [Internet]. 2018;27(2):164–70. DOI:
https://doi.org/ 10.1097/CEJ.0000000000000322. Available from: https://journals.lww.com/eurjcancerprev/Abstract/2018/03000/Coffee_consumption_ nd_risk_of_nonmelanoma_
skin.10.aspx
Castanheira A. TERTp mutations and p53 expression in head and neck cutaneos bassal cell carcinomas with different aggressive features. Sci reports Nat [Internet]. 2021; DOI: https://doi.org/10.1038/s41598-021-89906-w. Available from
https://www.nature.com/articles/s41598-021-89906-w
Feller L, Khammissa RAG, Kramer B, Altini M, Lemmer J. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face. Head Face Med [Internet]. 2016;12(1):1–7. DOI: https://doi.org/10.1186/s13005-016-0106-0. Available from:
https://head-face-med.biomedcentral.com/track/pdf/10.1186/s13005-016-0106-0.pdf
Pellegrini C, Maturo MG, Di Nardo L, Ciciarelli V, García-Rodrigo CG, Fargnoli MC. Understanding the Molecular Genetics of Basal Cell Carcinoma. Int J Mol Sci [Internet]. 2017; 18 (11): 2485. DOI: https://doi.org/10.3390/ijms18112485. Available from: https://pubmed.ncbi.nlm.nih.gov/29165358/
Paolino G, Donati M, Didona D, Mercuri S, Cantisani C. Histology of Non-Melanoma Skin Cancers: An Update.
Biomedicines [Internet]. 2017;5(4):71. DOI: https://doi.org/ 10.3390/biomedicines5040071. Available from: http://www.mdpi.com/2227-9059/5/4/71
Cameron M, Lee E, Hibler B, Giordano C, Barker C, Mori S, et al. Basal cell carcinoma: Contemporary approaches to diagnosis, treatment, and prevention. J Am Acad Dermatol [Internet]. 2019; 80(2): 321–39. DOI: https://doi.org/10.1016/j.jaad.2018.02.083. Available from:
https://www.jaad.org/article/S0190-9622(18)30776-X/fulltext
National Comprehensive Cancer Network. Basal Cell Skin Cancer NCCN. [Internet]. 2022. Available from:
https://www.nccn.org/professionals/physician_gls/pdf/nmsc.pdf
Dabbs DJ. Diagnóstico Inmonohistoquímico: Aplicaciones Teranósticas y Genómicas [Internet]. Quinta edi.
AMOLCA, editor. Pittsburgh, Pensilvania: Elsevier Inc.; 2019. 944 p. ISBN 9789804300707. Disponible en:
Mostafa N, Assaf M, Elhakim S, Abdel M, El-Nabarawy E, Gharib K. Diagnostic accuracy of immunohistochemical markers in differentiation between basal cell carcinoma and trichoepithelioma in small biopsy specimens. J Cutan Pathol. [Internet]. 2018;45(11):807–16. DOI: https://doi.org/10.1111/cup.13305. Available from:
https://onlinelibrary.wiley.com/doi/10.1111/cup.13305
Gracia-Cazaña T, Mascaraque M, Lucena S, Vera J, González S, Juarranz Á, et al. Biomarkers of basal cell carcinoma resistance to methyl-aminolevulinate photodynamic therapy. PLoS One. [Internet]. 2019; 14(4):1–14. DOI: https://doi.org/10.1371/journal. Available from:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215537
Thomson J, Hogan S, Leonardi J, Williams H, Bath F. Interventions for basal cell carcinoma of the skin. Cochrane Database Syst Rev. [Internet]. 2020;2020(11). DOI: https://doi.org/10.1002/14651858.CD003412.pub3. Available from:
https://www.cochrane.org/CD003412/SKIN_interventions-basal-cell-carcinoma-skin
Cerci F, Kubo E, Werner B, Tolkachjov S. Surgical margins required for basal cell carcinomas treated with Mohs micrographic surgery according to tumor features. J Am Acad Dermatol [Internet]. 2020; 83(2): 493–500. DOI: https://doi.org/10.1016/j.jaad.2020.04.008. Available from:
https://pubmed.ncbi.nlm.nih.gov/32289390/
Willardson H, Lombardo J, Raines M, Nguyen T, Park J, Dalton S, et al. Predictive value of basal cell carcinoma
biopsies with negative margins: A retrospective cohort study. J Am Acad Dermatol [Internet]. 2018; 79(1): 42–6.
DOI: https://doi.org/10.1016/j.jaad.2017.12.071. Available from:
https://pubmed.ncbi.nlm.nih.gov/29307646/
Lohuis P, Joshi A, Borggreven P, Vermeeren L, Zupan B, Al-Mamgani A, et al. Aggressive basal cell carcinoma of the head and neck: challenges in surgical management. Eur Arch Oto-Rhino-Laryngology. [Internet]. 2016; 273(11): 3881–9. DOI: https://doi.org/10.1007/s00405-016-4039-9 . Available from https://link.springer.com/article/10.1007/s00405-016-4039-9
Khalesi M, Waterhouse M, Whiteman DC, Johns R, Rosendahl C, Hackett T, et al. Comparison of PTCH1, COX-2, p53, and Ki-67 protein expression in basal cell carcinomas of nodular and superficial subtypes arising on the head and trunk. Int J Dermatol. [Internet]. 2016; 55(10): 1096–105. DOI: https://doi.org/10.1111/ijd.13276. Available from:
https://pubmed.ncbi.nlm.nih.gov/27126210/
Stamatelli A, Saetta AA, Bei T, Kavantzas N, Michalopoulos N V., Patsouris E, et al. B-Raf mutations, microsatellite instability and p53 protein expression in sporadic basal cell carcinomas. Pathol Oncol Res. [Internet]. 2011; 17(3): 633–7. DOI: 10.1007/s12253-011-9363-1. Available from:
https://pubmed.ncbi.nlm.nih.gov/21274671/
Juba A, Şovrea A, Crişan D, Melincovici C, Coneac A, Badea M, et al. Apoptotic markers in photoinduced cutaneous carcinoma. Rom J Morphol Embryol. 2013;54(3 SUPPL.):741–7. Available from: https://pubmed.ncbi.nlm.nih.gov/24322021/
Karsinom, B. The Expression of p53 and COX-2 in Bassal Cell Carcinoma, Squamous Cell Carcinoma and
Actinic Keratosis Cases. Turk Patoloji Dergisi. [Internet]. 2012; 28 (2):119-127. DOI: https://doi.org/10.5146/
tjpath.2012.01110. Available from:
https://pubmed.ncbi.nlm.nih.gov/22627629/
Koyun E, Karadag R, Ozkanli S, Oguztuzun S, Kocdogan AK, Ozsoy I. Caspase-3, p53 and Bcl-2 expression in basal cell carcinoma of the eyelid. Postep Dermatologii i Alergol. [Internet]. 2020;37(4):535–9. DOI: https://doi.org/10.5114/ada.2020.98285. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507160/
Mercuţ R, Ciurea ME, Mǎrgǎritescu C, Popescu SM, Cràiţoiu MM, Cotoi OS, et al. Expression of p53, D2-40
and α-smooth muscle actin in different histological subtypes of facial basal cell carcinoma. Rom J Morphol Embryol.[Internet]. 2014; 55(2): 263–72. Available from:
https://pubmed.ncbi.nlm.nih.gov/24969973/
Mateoiu C, Pirici A, Bogdan FL. Immunohistochemical nuclear staining for p53, PCNA, ki-67 and bcl-2 in different histologic variants of basal cell carcinoma. Rom J Morphol Embryol. [Internet]. 2011; 52(SUPPL. 1): 315–9. Available from:
Los autores que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores conservan los derechos de autor y ceden a la REVISTA MÉDICA - CIENTÍFICA CAMbios HCAM el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en la REVISTA MÉDICA-CIENTÍFICA CAMbios HECAM.