logo_hcam

Revista Médica Científica CAMbios

Periodicidad semestral: flujo continuo.

ISSN - Electrónico: 2661-6947 / DOI: 10.36015 • LILACS BIREME (19784); LATINDEX (20666)

Ver PDF (Spanish)

Keywords

Molecular Doching Simulation
Robotic Surgical Procedures
Urological Surgical Procedures
Mortality
Learning Curve
Cholecystectomy

How to Cite

1.
Pediatric robotic surgery in modern practice:  trends and challenges. Cambios rev. méd. [Internet]. 2025 Dec. 23 [cited 2026 Jan. 3];24(2):e1072. Available from: https://revistahcam.iess.gob.ec/index.php/cambios/article/view/1072

Abstract

INTRODUCTION: Robotics has emerged as an innovative tool in the field of minimally invasive surgery.

OBJECTIVE: To conduct an epidemiological analysis of pediatric robotic surgery, as well as to describe the outcomes, complications, surgical times, and each type of surgery performed as part of the robotic surgery program at HECAM during the period 2021-2023.

MATERIALS AND METHODS: An analytical cross-sectional study was conducted, including
105 pediatric patients of both sexes, aged between 1 and 17 years. The variables analyzed
included weight, type of surgery, complications, duration of hospital stay, number of procedures
performed, total surgical time, docking time, console time, and surgical closure time.

RESULTS: A total of 105 patients were included (45.7% male; 54.3% female) with a mean age
of 9.85 years (SD 4.53) and an average weight of 38.13 kg (SD 19.46). The total operative time
was 102.67 minutes (SD 65.07), docking time 14.83 minutes (SD 9.36), closure time 22.54
minutes (SD 11.15), and console use time 65 minutes (SD 57.16). General surgery accounted
for 72.4% of the procedures, and urology accounted for 27.6%. The overall complication rate
was 13.3%: 4.8% minor, 1% moderate, 1.9% severe, 2.9% life-threatening, and 1.9% mortality.

CONCLUSIONS: Pediatric robotic surgery at HECAM proved to be a safe and feasible approach, with a low rate of major complications and minimal conversion to open surgery. Surgical times varied significantly depending on the type of procedure, showing a pattern of progressive
operational improvement. These results support the adoption and continuation of the pediatric robotic program, as well as the need for comparative and multicenter studies to strengthen the
existing evidence.

 

 

 

Ver PDF (Spanish)

References

1. Salö M, Bonnor L, Graneli C, Stenström P, Anderberg M. Ten

years of paediatric robotic surgery: Lessons learned. International Journal of Medical Robotics and Computer Assisted Surgery. 2022 Aug 1;18(4). Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9541232/

2. Badillo Pazmiño MC, Cáceres Aucatoma F, Guamán Ludeña P.

Características clínicas y resultados quirúrgicos de pacientes pediátricos intervenidos por cirugía robótica. HCAM. CAMbios

2022, V21 (2): e 875. DOI: https://doi.org/10.36015/cambios.v21.

n2.2022.875. Available from:

https://revistahcam.iess.gob.ec/index.php/cambios/article/view/875/627

3. Kulaylat AN, Richards H, Yada K, Coyle D, Shelby R, Onwuka AJ,

et al. Comparative analysis of robotic-assisted versus laparoscopic cholecystectomy in pediatric patients. J Pediatr Surg. 2021 Oct 1;56(10):1876–80. DOI: 10.1016/j.jpedsurg.2020.11.013 . Available from:

https://pubmed.ncbi.nlm.nih.gov/33276970/

4. Griffin KL, Ragan M V., Patterson KN, Diefenbach KA, Needleman BJ, Aldrink JH, et al. Robotic-Assisted Metabolic and Bariatric Surgery in the Pediatric Population. Semin Pediatr Surg. 2023 Feb 1;32(1). DOI: 10.1016/j.sempedsurg.2023.151257 . Available from:

https://pubmed.ncbi.nlm.nih.gov/36739691/

5. Angotti R, Raffaele A, Molinaro F, Riccipetitoni G, Chiesa PL, Lisi

G, et al. Rise of pediatric robotic surgery in Italy: a multicenter observational retrospective study. Annals of Pediatric Surgery. 2022 Dec 1;18(1). DOI:10.1186/s43159-021-00144-1. Available from:

https://www.researchgate.net/publication/358286533_Rise_of_pediatric_robotic_surgery_in_Italy_a_multicenter_observational_retrospective_study

6. Salkini MW. Robotic surgery in pediatric urology. Vol. 14, Urology Annals. Wolters Kluwer Medknow Publications; 2022. p. 314–6. PMID: 36505985. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9731187/

7. Sheth KR, Koh CJ. The future of robotic surgery in pediatric urology: Upcoming technology and evolution within the field. Vol. 7, Frontiers in Pediatrics. Frontiers Media S.A.; 2019. Jul 2:7:259.

doi: 10.3389/fped.2019.00259. Available from:

https://pubmed.ncbi.nlm.nih.gov/31312621/

8. De Lambert G, Fourcade L, Centi J, Fredon F, Braik K, Szwarc

C, et al. How to successfully implement a robotic pediatric surgery program: Lessons learned after 96 procedures. Surg Endosc. 2013;27(6):2137–44. DOI: 10.1007/s00464-012-2729-y . Available from:

https://pubmed.ncbi.nlm.nih.gov/23355145/

9. Van Haasteren G et al. Cirugía robótica pediátrica: primeras evaluaciones. 2009: Vol. 68 No. 6: pp 303-310 Available from: https://www.elsevier.es/es-revista-pediatrics-10-articulo-cirugia-robotica-pediatrica-primeras-evaluaciones-X0210572109462069

10. Jacobson JC, Pandya SR. Pediatric robotic surgery: An overview. Semin Pediatr Surg. 2023 Feb 1;32(1): 151255. doi: 10.1016/j.sempedsurg.2023.151255. Available from: https://pubmed.ncbi.nlm.nih.gov/36736161/

11. Soto Beauregard C, Rodríguez De J, García A, Domínguez Amillo EE, Cervantes MG, Ávila Ramírez LF. Implementación de un

programa de cirugía robótica pediátrica. Perspectivas futuras. Cir

Pediatr. 2022; 35:187–95. Available from: https://secipe.org/coldata/upload/revista/2022_35-4ESP_187.pdf

12. Meehan JJ, Sandler A. Pediatric robotic surgery: A single-institutional review of the first 100 consecutive cases. Surgical Endoscopy and Other Interventional Techniques. 2008 Jan;22(1):177–82. DOI: 10.1007/s00464-007-9418-2. Available from:

https://pubmed.ncbi.nlm.nih.gov/17522913/

13. Palep JH. Robotic assisted minimally invasive surgery. Vol.

5, Journal of Minimal Access Surgery. 2009. p. 1–7. DOI:

10.4103/0972-9941.51313. Available from:

https://journals.lww.com/jmas/fulltext/2009/05010/robotic_assisted_minimally_invasive_surgery.1.aspx

14. Chandra V, Nehra D, Parent R, Woo R, Reyes R, Hernandez-

Boussard T, et al. A comparison of laparoscopic and robotic

assisted suturing performance by experts and novices. Surgery.

2010 Jun;147(6):830–9. DOI: 10.1016/j.surg.2009.11.002 . Available

from:

https://pubmed.ncbi.nlm.nih.gov/20045162/

15. Bindi E, Todesco C, Nino F, Torino G, Gentilucci G, Cobellis G.

Robotic Surgery: Is There a Possibility of Increasing Its Application in Pediatric Settings? A Single-Center Experience. Children. 2022 Jul 1;9(7) :1021. doi: 10.3390/children9071021. Available from:

https://pmc.ncbi.nlm.nih.gov/articles/PMC9325175/

16. Gutt CN, Markus B, Kim ZG, Meininger D, Brinkmann L, Heller

K. Early experiences of robotic surgery in children. Surgical Endoscopy and Other Interventional Techniques. 2002;16(7):1083–6. DOI: 10.1007/s00464-001-9151-1 . Available from:

https://pubmed.ncbi.nlm.nih.gov/12165827/

17. Ahmad H, Shaul DB. Pediatric colorectal robotic surgery. Semin Pediatr Surg. 2023 Feb 1;32(1). DOI: 10.1016/j.sempedsurg.

2023.151259 . Available from:

https://pubmed.ncbi.nlm.nih.gov/36739693/

18. Hajiyev P, Gundeti MS. Robotic assisted complex urological

reconstructions. Semin Pediatr Surg. 2023 Feb 1;32(1). DOI:

10.1016/j.sempedsurg.2023.151265. Available from:

https://pubmed.ncbi.nlm.nih.gov/36739694/

19. Mishra P, Gupta B, Nath A. Anesthetic considerations and goals in robotic pediatric surgery: a narrative review. 2020. Vol. 34 (2) Apr 34 (2): 286-293. Journal of Anesthesia. Springer; https://pubmed.ncbi.nlm.nih.gov/31980927/

20. Cruz SM, Srinivas S, Wala SJ, Head WT, Michalsky MP, Aldrink

JH, et al. Robotic-assisted minimally invasive surgery: Foregut

procedures in pediatric patients. Semin Pediatr Surg. 2023 Feb

1;32(1): ):151256. doi: 10.1016/j.sempedsurg.2023.151256. Available from:

https://pubmed.ncbi.nlm.nih.gov/36746111/

21. Svetanoff WJ, Bergus KC, Xia J, Diefenbach KA, Michalsky MP,

Aldrink JH. Robotic-assisted resection of mediastinal tumors in

pediatric patients. Semin Pediatr Surg. 2023 Feb 1;32(1). :151262.

doi: 10.1016/j.sempedsurg.2023.151262. Available from:

https://pubmed.ncbi.nlm.nih.gov/36738480/

22. Jacobson JC, Scrushy MG, Gillory LA, Pandya SR. Utilization of

robotics in pediatric surgical oncology. Semin Pediatr Surg. 2023

Feb 1;32(1). DOI: 10.1016/j.sempedsurg.2023.151263 . Available

from:

https://pubmed.ncbi.nlm.nih.gov/36753917/

23. van Boxel GI, Kingma BF, Voskens FJ, Ruurda JP, van Hillegersberg R. Robotic-assisted minimally invasive esophagectomy: Past, present and future. In: Journal of Thoracic Disease. AME Publishing

Company; 2020. p. 54–62. doi: 10.21037/jtd.2019.06.75. Available

from:

https://pmc.ncbi.nlm.nih.gov/articles/PMC7061186/

24. Rela M, Rajalingam R, Shetty G, Cherukuru R, Rammohan

A. Robotic monosegment donor hepatectomy for pediatric liver

transplantation: First report. Pediatr Transplant. 2022 Feb

1;26(1) :e14110. doi: 10.1111/petr.14110. PMID: 34383361 DOI:

10.1111/petr.14110 . Available from: https://pubmed.ncbi.nlm.nih.gov/34383361/

25. Grammens J, Schechter MY, Desender L, Claeys T, Sinatti C,

VandeWalle J, et al. Pediatric Challenges in Robot-Assisted Kidney

Transplantation. Front Surg. 2021 Mar 25;8. 649418. doi:

10.3389/fsurg.2021.649418. Available from: https://pubmed.ncbi.

nlm.nih.gov/33842532/

26. Boia ES, David VL. The financial burden of setting up a pediatric robotic surgery program. Medicina (Lithuania). 2019 Nov 1;55(11). DOI: 10.3390/medicina55110739. Available from:

https://pubmed.ncbi.nlm.nih.gov/31739631/

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Medical-Scientific Journal CAMbios HECAM