logo_hcam

Revista Médica Científica CAMbios

Periodicidad semestral: flujo continuo.

ISSN - Electrónico: 2661-6947 / DOI: 10.36015 • LILACS BIREME (19784); LATINDEX (20666)

Ver PDF (Spanish)
Ver HTML (Spanish)
Ver EPUB (Spanish)

Keywords

Opportunistic Infections
Noxae
Bacteremia
Epidemiological Monitoring
Health Surveillance
Hospitals

How to Cite

1.
Genes involved with antimicrobial resistance in Ecuadorian hospitals: Antimicrobial resistance in Ecuadorian Hospitals. Cambios rev. méd. [Internet]. 2022 Dec. 30 [cited 2025 May 17];21(2):e-863. Available from: https://revistahcam.iess.gob.ec/index.php/cambios/article/view/863

Abstract

INTRODUCTION. Antimicrobial resistance is a current public health problem associated with high mortality, prolonged hospitalization, reduced therapeutic alternatives, increased economic costs, and the potential for hospital outbreaks. OBJECTIVE. To describe the main genes involved with antimicrobial resistance in hospitals in Ecuador. MATERIALS AND METHODS. A retrospective non-experimental description of indexed articles related to antimicrobial resistance in hospitals in Ecuador was carried out, with evidence from 2009 to 2022. The review of bibliographies was carried out in databases such as Pubmed, Science Direct and Google Scholar. RESULTS. From an original group of 77 articles, 33 papers were selected. In Ecuador, several studies have described the molecular mechanisms involved in bacterial resistance. However, in less common bacteria, research on the associated genes is lacking. CONCLUSIONS. The main multidrug-resistant bacteria described in Ecuador are Klebsiella pneumoniae, Escherichia coli and Acinetobacter baumanni, which present genes involved in the production of carbapenemases (blaKPC, blaNDM, blaOXA-48). These bacteria present high levels of antibiotic resistance and are subject to epidemiological surveillance by the national health system. Locally, other bacteria present mechanisms of resistance to carbapenemics (Pseudomonas aeruginosa, Enterobacter sp., Serratia marcescens, Citrobacter sp.), but there are no detailed descriptions of the genotype, their microbiological characteristics or the patient’s clinic. Knowledge of antimicrobial
resistance rates in different hospitals, the implementation of an antibiotic stewardship plan, the correct use of personal protective equipment, the isolation of individuals with multidrug-resistant infections, as well as collaborative work between different areas of the hospital, are essential to reduce the spread of these pathogens.

Ver PDF (Spanish)
Ver HTML (Spanish)
Ver EPUB (Spanish)

References

World Health Organization. Antimicrobial resistance. WHO. Available from:

https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=It requires urgent multisectoral action,development of drug-resistant pathogens. Published 2021

Murray C, Ikuta K, Sharara F, Lancet LS-T, 2022 U. Global burden o bacterial antimicrobial resistance in 2019: a systematic analysis. Elsevier. 2022;399(10325):1-58 Available from:

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/ulltext

World Health Organization (WHO). Global action plan on antimicrobial resistance. World Heal Organ. 2017:1-

Available from:

https://www.who.int/publications/i/item/9789241509763

OPS. 2021 TrACSS Country Report on the Implementation of National Action Plan on Antimicrobial Resistance

(AMR). Ctry Rep Implement Natl Plans AntimicrobResist. 2021:1-6. Available from:

https://www.who.int/publications/m/item/Antimicrobial-resistance-tracss-ecu-2021-country-prole

Romo-Castillo HF, Pazin-Filho A. Towards implementing an antibiotic stewardship programme (ASP) in Ecuador:

evaluating antibiotic consumption and the impact of an ASP in a tertiary hospital according to World Health Organization (WHO) recommendations. J Glob Antimicrob Resist. 2022;29:462-467. DOI:10.1016/j.jgar.2021.11.001

Ecuador. Ministerio de Salud Pública. Plan Nacional para la prevención y control de la resistencia antimicrobiana 2019-2023. Quito. VIceministerio de Gobernanza y Vigilancia de la Salud. 34 p. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2019/10/Plan-Nacional-para-la-prevenci%C3%B3n-y-control-de-la-resistencia-antimicrobiana_2019_compressed.pd

De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev.

;33(3):1-49.

DOI:10.1128/CMR.00181-19

Zurita J, Alcocer I, Ortega-Paredes D, et al. Carbapenem-hydrolysing β-lactamase KPC-2 in Klebsiella pneumoniae isolated in Ecuadorian hospitals. J Glob Antimicrob Resist. 2013;1(4):229-230.

DOI:10.1016/J.JGAR.2013.06.001

Lespada MI, Córdova E, Roca V, Gómez N, Badía M, Rodríguez C. Bacteriemia por Klebsiella pneumoniae productora de carbapenemasa tipo KPC. Estudio comparativo y evolución en 7 años. O J Spanish Soc Chemother. 2019;32(1):15-21. Disponible en:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372954/

Bassetti M, Giacobbe DR, Giamarellou H, et al. Management of KPC-producing Klebsiella pneumoniae infections. Clin Microbiol Infect. 2018;24(2):133-144.

DOI:10.1016/j.cmi.2017.08.030

Prado-Vivar MB, Ortiz L, Reyes J, et al. Molecular typing of a large nosocomial outbreak of KPC-producing

bacteria in the biggest tertiary-care hospital of Quito, Ecuador. J Glob Antimicrob Resist. 2019;19:328-332.

DOI:10.1016/j.jgar.2019.05.014

Fu P, Luo X, Shen J, et al. The molecular and epidemiological characteristics of carbapenemase-producing

Enterobacteriaceae isolated from children in Shanghai, China, 2016–2021. J Microbiol Immunol Inect. 2022.

DOI:10.1016/j.jmii.2022.07.012

Reyes J, Cárdenas P, Tamayo R, et al. Characterization of blaKPC-2-Harboring Klebsiella pneumoniae Isolates

and Mobile Genetic Elements from Outbreaks in a Hospital in Ecuador. Microb Drug Resist. 2021;27(6):752-759. DOI:10.1089/mdr.2019.0433

Zurita J, Parra H, Gestal MC, McDermott J, Barba P. First case of NDM-1-producing Providencia rettgeri in

Ecuador. J Glob Antimicrob Resist. 2015;3(4):302-303.

DOI:10.1016/j.jgar.2015.07.003

Zurita J, Solís MB, Ortega-Paredes D, Barba P, Paz y Miño A, Sevillano G. High prevalence of B2-ST131 clonal

group among extended-spectrum β-lactamase-producing Escherichia coli isolated from bloodstream infections in Quito, Ecuador. J Glob Antimicrob Resist. 2019;19:216-221.

DOI:10.1016/j.jgar.2019.04.019

Romero-Alvarez D, Reyes J, Quezada V, et al. First case o New Delhi metallo-β-lactamase in Klebsiella

pneumoniae from Ecuador: An update for South America. Int J Inect Dis. 2017;65:119-121.

DOI:10.1016/j.ijid.2017.10.012

Villacís JE, Bovera M, Romero-Alvarez D, et al. NDM-1 carbapenemase in Acinetobacter baumannii sequence

type 32 in Ecuador. New Microbes New Infect. 2019;29:100526.

DOI:10.1016/j.nmni.2019.100526

Gómez BJP, Pazmiño JPR, Quinde GSG, et al. Multidrug-Resistant Klebsiella pneumoniae in a Patient with

SARS-Cov-2 Pneumonia in an Intensive Care Unit in Guayaquil, Ecuador: A Case Report. Am J Case Rep.

;23:1-7.

DOI:10.12659/AJCR.936498

Villacís JE, Reyes JA, Castelán-Sánchez HG, et al. OXA-48 carbapenemase in Klebsiella pneumoniae sequence

type 307 in Ecuador. Microorganisms. 2020;8(3).

DOI:10.3390/microorganisms8030435

Garrido D, Garrido S, Gutiérrez M, et al. Clinical characterization and antimicrobial resistance of Escherichia

coli in pediatric patients with urinary tract infection at a third level hospital of Quito, Ecuador. Bol Med

Hosp Inant Mex. 2017;74(4):265-271.

DOI:10.1016/j.bmhimx.2017.02.004

Chiluisa-Guacho C, Escobar-Perez J, Dutra-Asensi M. First Detection of the CTXM-15 Producing Escherichia

coli O25-ST131 Pandemic Clone in Ecuador. Pathogens. 2018;4(42):1-4.

DOI:10.3390/pathogens7020042

Calva Delgado D, Toledo Barrigas Z, Ochoa Astutillo S, Arévalo Jaramillo A, Ausili A. Detection and molecular

characterization o β-lactamase genes in clinical isolates of Gram-negative bacteria in Southern Ecuador. Brazilian J Inect Dis. 2016;20(6):627-630.

DOI:10.1016/j.bjid.2016.07.001

Centro de Referencia Nacional de Resistencia Antimicrobiana-Instituto Nacional de Investigación en Salud

Pública C-I. Reporte de datos de Resistencia a los antimicrobianos en Ecuador 2014-2018. Ministerio de Salud

Pública. Disponible en:

https://www.salud.gob.ec/wp-content/uploads/2019/08/gaceta_ram2018.pd. Published 2018

Ortega-Paredes D, Barba P, Zurita J. Colistin-resistant Escherichia coli clinical isolate harbouring the mcr-1 gene in Ecuador. Epidemiol Inect. 2016;144(14):2967-2970.

DOI:10.1017/S0950268816001369

Pachay Solórzano JW, Pachay Parrales VE. Pseudomonas aeruginosa y su evolución de resistencia a los antibióticos en un hospital de segundo nivel en Portoviejo, Ecuador. QhaliKay Rev Ciencias la Salud ISSN 2588-

2021;5(2):50.

DOI:10.33936/qkrcs.v5i2.3002

Barbecho Coraisaca DV. Susceptibilidad antimicrobiana en Pseudomona spp., en el Hospital General Docente

Cuenca-Ecuador. Rev Vive. 2021;4(12):484-499.

DOI:10.33996/revistavive.v4i12.108

Zurita J, Sevillano G, Paz y Miño A, et al. Mutations associated with Helicobacter pylori antimicrobial resistance

in the Ecuadorian population. J Appied Microbiol. 2021;132(4):2694-2704.

DOI: 10.1111/jam.15396

Córdova SDV, Pierard SMC, Jiménez SOI. Prevalencia de Staphylococcus aureus meticilino resistente en

el personal de salud de un Hospital de Especialidades en Quito-Ecuador. Rev San Gregor. 2021;45:86-98.

DOI:10.36097/rsan.v0i45.1515

Zurita J, Barba P, Ortega-Paredes D, Mora M, Rivadeneira S. Local circulating clones of Staphylococcus aureus

in Ecuador. Brazilian J Inect Dis. 2016;20(6):525-533.

DOI:10.1016/j.bjid.2016.08.006

Panesso D, Reyes J, Rinco S, et al. Molecular Epidemiology of Vancomycin-Resistant Enterococcus faecium

: a Prospective , Multicenter Study in South American Hospitals. J Clin Microbiol. 2010;48(5):1562-1569.

DOI:10.1128/JCM.02526-09

Garzon-Chavez D, Garcia-Bereguiain MA, Mora-Pinargote C, et al. Population structure and genetic diversity

of Mycobacterium tuberculosis in Ecuador. Sci Rep. 2020;10(1):1-9.

DOI:10.1038/s41598-020-62824-z

Garzon-Chavez D, Zurita J, Mora-Pinargote C, et al. Prevalence, Drug Resistance, and Genotypic Diversity of the Mycobacterium tuberculosis Beijing Family in Ecuador. Microb Drug Resist. 2019;25(6):931-937.

DOI:10.1089/mdr.2018.0429

INSTITUTO NACIONAL DE INVESTIGACIÓN EN SALUD PÚBLICA I. Instructivo de elaboración del

“análisis acumulado de susceptibilidad antimicrobiana” (AASA). Curso Form Contin “Manejo Del Sist Whonet.”

:25. Disponible en:

http://www.investigacionsalud.gob.ec/webs/ram/wp-content/uploads/2016/08/Instructivo-de-Anílisis-Acumulado-de-Susceptibilidad-Antimicrobiana-AASA.pdf

 

The authors who publish in this journal accept the following conditions:

1. The authors retain the copyright and grant to the CAMbios MEDICAL-SCIENTIFIC JOURNAL HECAM the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published material provided that they mention the authorship of the work and the first publication in this journal.

2. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (for example, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work was published. for the first time in the CAMbios MEDICAL-SCIENTIFIC JOURNAL HECAM.