Saturación Venosa Central y gradiente venosa-arterial de dióxido de carbono como predictor de mortalidad en choque séptico

Palabras clave: Sepsis, Choque Séptico, Saturación de Oxígeno, Mortalidad, Insuficiencia Multiorgánica, Indicadores de Morbimortalidad

Resumen

INTRODUCCIÓN. Choque séptico, es una condición letal con varios factores patogénicos y la interpretación basada únicamente en el lactato puede llevar a conclusiones incompletas, por aquello obtener alternativas de evaluación es una meta. OBJETIVO. Conocer la confiabilidad de la combinación de saturación venosa central conjuntamente con el gradiente venoso-arterial de la presión parcial de dióxido de carbono como marcador de mortalidad y gravedad. MATERIALES Y MÉTODOS. Estudio observacional prospectivo, descriptivo. Población de 171 y muestra de 123 pacientes con choque séptico del Área de Cuidados Intensivos del Hospital de Especialidades Carlos Andrade Marín en un periodo de tiempo de 8 meses entre noviembre-2018 hasta junio-2019 y seguimiento de 28 días. Criterios de inclusión: pacientes mayores de 18
años con choque séptico según los criterios diagnósticos de Sepsis-3, acceso venoso central yugular o subclavio con la punta del catéter que se ubique en el tercio inferior de la vena cava superior, cercana a la unión de ésta con la aurícula derecha y cumplimiento de toma de gasometría venosa y arterial según el protocolo de Sepsis y Choque Séptico. Criterios de exclusión: mujer embarazada, choque hipovolémico asociado o sangrado activo, choque cardiogénico de causa no séptica, paro cardiopulmonar, falla hepática Child C, choque por vasodilatación por fármacos y ausencia de datos en las historias clínicas o bitácoras. El procesamiento de datos se realizó con el programa International Businnes Machines/Statistical Package for the Social Sciences Versión 22. RESULTADOS. Mortalidad del 37.4% en cuidados intensivos y 48% a los 28 días. Escala Sepsis related Organ Failure Assessment 11 puntos y 10 a las 48 horas. Posterior a la fase de resucitación, se dividió en 4 grupos. El grupo 1 y el grupo 4 destacaron con una mortalidad a los 28 días 63.1% y 42.4% respectivamente. Entre el grupo 4 y la población general no existió diferencia en mortalidad. En cuanto al fallo orgánico, los individuos que cumplieron la meta (Saturación venosa central >70%/ gradiente venoso-arterial de la presión parcial de dióxido de carbono < 6 mm Hg) comparado con quienes no lo hicieron presentaron una media de escala Sepsis related Organ Failure Assessment a las 48 horas de: 8.85 +/- 4.65 y 10.78 +/-4.93 respectivamente. DISCUSIÓN. La combinación de Saturación venosa central y
la presión parcial de dióxido de carbono no es un predictor confiable de mortalidad. Pero, puede
determinar la progresión de fallos orgánicos a las 48 horas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb;315(8): 801-810. Available from: https://jamanetwork.com/journals/jama/fullarticle/2492881

Silva E, Pedro MDA, Sogayar ACB, Mohovic T, Silva CLDO, Janiszewski M, et al. Brazilian Sepsis Epidemiological

Study (BASES study). Crit Care. 2004 Aug; 8(4):R251-60. Available from:

https://pubmed.ncbi.nlm.nih.gov/15312226/

Dougnac L A, Mercado F M, Cornejo R R, Cariaga V M, Hernández P G, Andresen H M, et al. Prevalencia

de sepsis grave en las Unidades de Cuidado Intensivo: Primer estudio nacional multicéntrico. Rev

Med Chil. 2007 May;135(5):620–30. Available from:

https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872007000500010

Salazar Coba SD, Guerrero Toapanta F, Del Pozo G. Caracterización demográfica y epidemiológica de la Unidad

de Cuidados Intensivos del Hospital de Especialidades Carlos Andrade Marín de los años 2014 , 2015 y 2016. Rev

médica-científica CAMbios HACM. 2018;17(1):21–9. Available from:

https://pesquisa.bvsalud.org/portal/resource/pt/biblio-981095

Ramos E, Cevallos C, Herdoíza A, Ruiz Galarza JS, Gabela Rosales MC, Betancourt Villamarín E. Perfil demográfico y epidemiológico de la sepsis en la Unidad de Cuidados Intensivos del Hospital de Especialidades Carlos Andrade Marín. Rev Médica-Científica CAMbios HCAM.2018;17(1):36–41. Disponible en: https://docs.bvsalud.org/biblioref/2019/03/981097/articulos-6.pdf

Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med.

;40(12):1795–815. Available from:

https://pubmed.ncbi.nlm.nih.gov/25392034/

Claure-Del Granado R, Mehta RL. Fluid overload in the ICU: Evaluation and management. BMC Nephrol.

;109: 17(1):1–9 Available from:

https://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-016-0323-6

Mahajan R, Peter J, John G, Graham P, Rao S, Pinsky M. Patterns of central venous oxygen saturation, lactate

and veno-arterial CO 2 difference in patients with septic shock. Indian J Crit Care Med. 2015;19(10):580-586.

Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637957/

Hernández G, Teboul J-L. Is the macrocirculation really dissociated from the microcirculation in septic shock? Intensive Care Med. 2016 Oct;42(10):1621–4. Available from:

https://pubmed.ncbi.nlm.nih.gov/27289357/

Morocho JP, Martínez AF, Cevallos MM, Vasconez-Gonzalez J, Ortiz-Prado E, Barreto-Grimaldos A, et al.

Prolonged Capillary Refilling as a Predictor of Mortality in Patients With Septic Shock. J Intensive Care Med [Internet]. 2022 Mar 26;37(3):423–9. Available from:

http://journals.sagepub.com/doi/10.1177/08850666211003507

Hasanin A, Mukhtar A, Nassar H. Perfusion indices revisited. J Intensive Care. 2017;5(1):24. Available from:

https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-017-0220-5

Hernandez G, Bruhn A, Castro R, Regueira T. The holistic view on perfusion monitoring in septic shock. Curr

Opin Crit Care. 2012;18(3):280–6. Available from:

https://pubmed.ncbi.nlm.nih.gov/22473257/

Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med [Internet]. 2021 Nov 2;47: 1181–1247. Available from:

https://doi.org/10.1007/s00134-021-06506-y

Garcia-Alvarez M, Marik P, Bellini R. Stress hyperlactataemia: present understanding and controversy. Lancet Diabetes Endocrinol. Apr 2014;2(4):339-347. Available from:

https://pubmed.ncbi.nlm.nih.gov/24703052/

Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a Resuscitation

Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality among Patients with

Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA - J Am Med Assoc. 2019;321(7):654–

Available from:

https://jamanetwork.com/journals/jama/fullarticle/2724361#:~:text=Findings%20In%20this%20randomized%20clinical,did%20not%20reach%20statistical%

significance.

Ospina-Tascón GA, Hernández G, Cecconi M. Understanding the venous–arterial CO2 to arterial–venous

O2 content difference ratio. Intensive Care Med. 2016;42(11):1801–4. Available from:

https://pubmed.ncbi.nlm.nih.gov/26873834/

Diaztagle Fernández JJ, Rodríguez Murcia JC, Sprockel Díaz JJ. La diferencia venoarterial de dióxido de carbono

en la reanimación de pacientes con sepsis grave y shock séptico: una revisión sistemática. Med Intensiva.

;401–10. Available from:

https://www.medintensiva.org/es-la-diferencia-venoarterial-dioxido-carbono-articulo-

S0210569117301420

Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Büchele G, Simion D, et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010;36(6):949–55. Available from: https://pubmed.ncbi.nlm.nih.gov/20221744/

Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002; 28(3):272–7. Available from:

https://pubmed.ncbi.nlm.nih.gov/11904655/

Ospina-Tascón GA, Umaña M, Bermúdez W, Bautista-Rincón DF, Hernandez G, Bruhn A, et al. Combination of

arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med. 2015 May; 41 (5): 796-805. Available from: https://pubmed.ncbi.nlm.nih.gov/25792204/

Ospina-Tascon G, Bautista-Rincon DF, Umana M, Tafur JD, Gutierrez A, Garcia A, et al. Persistently High Venous-to-Arterial Carbon Dioxide Differences during Early Resuscitation Are Associated with Poor Outcomes in Septic Shock. 2013;17(6):R294. Available from:

https://pubmed.ncbi.nlm.nih.gov/24330804/

Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: An additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25. Available from:

https://link.springer.com/article/10.1007/s00134-008-1199-0

Van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO2difference

as a tool in resuscitation of septic patients. Intensive Care Prevalencia del síndrome del impostor y nivel de autoestima en estudiantes de una facultad de medicina del Ecuador 7 / 9 e902 CAMbios 22(1) 2023 /

Med. 2013;39(6):1034–9. Available from:

https://pubmed.ncbi.nlm.nih.gov/23559077/

Du W, Liu D-W, Wang X-T, Long Y, Chai W-Z, Zhou X, et al. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care. 2013 Dec;28(6): 1110.e1-5. Available from:

https://pubmed.ncbi.nlm.nih.gov/24216336/

Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. Feb 1992: 101 (2): 509-15. Available from:

https://pubmed.ncbi.nlm.nih.gov/1735281/

Kopterides P, Bonovas S, Mavrou I, Kostadima E, Zakynthinos E, Armaganidis A. Venous oxygen saturation

and lactate gradient from superior vena cava to pulmonary artery in patients with septic shock. Shock. 2009

Jun;31(6):561–7. Available from:

https://pubmed.ncbi.nlm.nih.gov/18838939/

Carrillo Esper R, Carrillo Córdova JR, Carrillo Córdova LD. Estudio epidemiológico de la sepsis en unidades de terapia intensiva mexicanas. Cir Cir. 2009;77(4):301–8. Disponible en:

https://www.medigraphic.com/pdfs/circir/cc-2009/cc094h.pdf

Brun-Buisson C, Meshaka P, Pinton P, Vallet B. EPISEPSIS: a reappraisal of the epidemiology and outcome

of severe sepsis in French intensive care units. Intensive Care Med. 2004 Apr;30(4):580–8. Available from:

https://pubmed.ncbi.nlm.nih.gov/14997295/

Esteban A, Frutos-Vivar F, Ferguson ND, Peñuelas O, Lorente JÁ, Gordo F, et al. Sepsis incidence and outcome:

Contrasting the intensive care unit with the hospital ward*. Crit Care Med. 2007 May;35(5):1284–9. Available from:

https://pubmed.ncbi.nlm.nih.gov/17414725/

Vincent J, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009

Dec;302(21):2323–9. Available from:

https://pubmed.ncbi.nlm.nih.gov/19952319/

Cheng B, Xie G, Yao S, Wu X, Guo Q, Gu M, et al. Epidemiology of severe sepsis in critically ill surgical patients

in ten university hospitals in China. Crit Care Med. 2007 Nov;35(11):2538–46. Available from: https://pubmed.ncbi.nlm.nih.gov/17828034/

Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29(4):530–8. Available from: https://pubmed.ncbi.nlm.nih.gov/12664219/

Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a New Definition

and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis

and Septic Shock (Sepsis-3). JAMA. 2016 Feb;315(8):775–87. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910392/

Martin GS, Mannino DM, Eaton S, Moss M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546–54. Available from:

https://pubmed.ncbi.nlm.nih.gov/12700374/

Harrison DA, Welch CA, Eddleston JM. The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004: Secondary analysis of a high quality clinical database, the ICNARC Case Mix Programme Database. Crit Care. 2006;10(2): R42:1–10. Available from:

https://www.researchgate.net/publication/7237201_Harrisson_DA_Welch_CA_Eddleston_JM_The_epidemiology_

of_severe_sepsis_in_England_Wales_and_Northern_Ireland_1996_to_2004_secondary_analysis_of_a_high_

quality_clinical_database_the_ICNARC_Case_Mix_Progr

van Gestel A, Bakker J, Veraart CPWM, van Hout BA. Prevalence and incidence of severe sepsis in Dutch intensive care units. Crit Care. 2004 Aug;8(4):R153-62. Available from:

https://pubmed.ncbi.nlm.nih.gov/15312213/

Finfer S, Bellomo R, Lipman J, French C, Dobb G, Myburgh J. Adult-population incidence of severe sepsis in

Australian and New Zealand intensive care units. Intensive Care Med. 2004 Apr;30(4):589–96. Available from: https://pubmed.ncbi.nlm.nih.gov/14963646/

Rivers EP, Yataco AC, Jaehne AK, Gill J, Disselkamp M. Oxygen extraction and perfusion markers in severe sepsis and septic shock: diagnostic, therapeutic and outcome implications. Curr Opin Crit Care. 2015 Oct;21(5):381–7. Available from:

https://pubmed.ncbi.nlm.nih.gov/26348417/

Randall HM, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol. 1966 Aug;211(2):493–505. Available from:

https://pubmed.ncbi.nlm.nih.gov/4288380/

von Planta M, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Myocardial acidosis associated with CO2 production

during cardiac arrest and resuscitation. Circulation. 1989 Sep;80(3):684–92. Available from:

https://pubmed.ncbi.nlm.nih.gov/2504512/

Nevière R, Chagnon J-L, Teboul J-L, Vallet B, Wattel F. Small intestine intramucosal PCO(2) and microvascular

blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002 Feb;30(2):379–84. Available from:

https://pubmed.ncbi.nlm.nih.gov/11889315/

Mallat J. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med. Feb 2016;5(1):47-56. Available from:

https://pubmed.ncbi.nlm.nih.gov/26855893/

Boulain T, Garot D, Vignon P, Lascarrou J-B, Desachy A, Botoc V, et al. Prevalence of low central venous oxygen

saturation in the first hours of intensive care unit admission and associated mortality in septic shock patients: a prospective multicentre study. Crit Care. 2014;18(6):609. Available from:

https://pubmed.ncbi.nlm.nih.gov/25529124/

Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon

dioxide partial pressure difference in early resuscitation from septic shock: A prospective observational study. Eur J Anaesthesiol. 2014;31(7):371–80. Available from:

https://pubmed.ncbi.nlm.nih.gov/24625464/

Gernot M, Reinhart K. Venous oximetry. Curr Opin Crit Care. 2006;12:263–8. Available from: https://pubmed.ncbi.nlm.nih.gov/16672787/

Brealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V, et al. Mitochondrial dysfunction in a longterm rodent model of sepsis and organ failure. Am J Physiol Integr Comp Physiol. 2004 Mar;286(3):R491–7. Available from:

https://pubmed.ncbi.nlm.nih.gov/14604843/

Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–23. Available from: https://pubmed.Gonzabay HE, Morán NA, Hurtado Tapia, JE. e902 8 / 9 CAMbios 22(1) 2023 /

ncbi.nlm.nih.gov/12133657/

Ince C. The rationale for microcirculatory guided fluid therapy. Curr Opin Crit Care [Internet]. 2014 Jun;20(3):301–8. Available from:

https://journals.lww.com/co-criticalcare/abstract/2014/06000/the_rationale_for_microcirculatory_

guided_fluid.13.aspx

De Backer D, Orbegozo Cortes D, Donadello K, Vincent J-L. Pathophysiology of microcirculatory dysfunction

and the pathogenesis of septic shock. Virulence. 2014 Jan;5(1):73–9. Available from:

https://pubmed.ncbi.nlm.nih.gov/24067428/

Textoris J, Fouché L, Wiramus S, Antonini F, Tho S, Martin C, et al. High central venous oxygen saturation in

the latter stages of septic shock is associated with increased mortality. Crit Care. 2011 Jul;15(4):R176. Available from:

https://pubmed.ncbi.nlm.nih.gov/21791065/

Osborn TM. Severe Sepsis and Septic Shock Trials (Pro-CESS, ARISE, ProMISe): What is Optimal Resuscitation?

Crit Care Clin. 2017;33(2):323–44. Available from:

https://pubmed.ncbi.nlm.nih.gov/28284298/

Grundler W, Weil MH, Rackow EC. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation. 1986 Nov;74(5):1071–4. Available from:

https://pubmed.ncbi.nlm.nih.gov/3094980/

Casserly B, Phillips GS, Schorr C, Dellinger RP, Townsend SR, Osborn TM, et al. Lactate Measurements in Sepsis-Induced Tissue Hypoperfusion. Crit Care Med. 2015 Mar;43(3):567–73. Available from: https://pubmed.ncbi.nlm.nih.gov/25479113/

Gu W-J, Wang F, Bakker J, Tang L, Liu J-C. The effect of goal-directed therapy on mortality in patients with sepsis-earlier is better: a meta-analysis of randomized controlled trials. Crit Care. 2014 Oct;18(5):570. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK293461/

Scott S, Antonaglia V, Guiotto G, Paladino F, Schiraldi F. Two-hour lactate clearance predicts negative outcome in patients with cardiorespiratory insufficiency. Crit Care Res Pract. 2010; 2010:917053. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958677/

Jansen TC, van Bommel J, Woodward R, Mulder PGH, Bakker J. Association between blood lactate levels, Sequential Organ Failure Assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study. Crit Care Med. 2009

Aug;37(8):2369–74. Available from:

https://pubmed.ncbi.nlm.nih.gov/19531949/

Publicado
2023-06-30
Cómo citar
1.
Gonzabay Campos H, Morán Puerta A, Hurtado Tapia J. Saturación Venosa Central y gradiente venosa-arterial de dióxido de carbono como predictor de mortalidad en choque séptico. CAMbios-HECAM [Internet]. 30jun.2023 [citado 9sep.2024];22(1):e902. Available from: https://revistahcam.iess.gob.ec/index.php/cambios/article/view/902
Sección
Estudio Original: Estudios Observacionales